

MINISTÉRIO DOS TRANSPORTES

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE **TRANSPORTES**

DIRETORIA-GERAL

DIRETORIA EXECUTIVA

INSTITUTO DE PESQUISAS RODOVIÁRIAS

Rodovia Presidente Dutra, km 163 Centro Rodoviário - Vigário Geral Rio de Janeiro - RJ - CEP 21240-000 Tel/fax: (21) 3545-4600

Dezembro/2010

NORMA DNIT 155/2010-ME

Material asfáltico – Determinação da penetração – Método de ensaio

Autor: Instituto de Pesquisas Rodoviárias - IPR

Processo: 50.607.001680/2010-16 Revisão da Norma DNER-ME 003/99

Aprovação pela Diretoria Colegiada do DNIT na reunião de 14/12/2010.

Direitos autorais exclusivos do DNIT, sendo permitida reprodução parcial ou total, desde que citada a fonte (DNIT), mantido o texto original e não acrescentado nenhum tipo de propaganda comercial

Palavras-Chave:

Nº total de páginas

Materiais asfálticos, penetração

07

Resumo

Este documento estabelece procedimento metodológico para determinação da penetração de materiais asfálticos semi-sólidos e sólidos, empregados rodovias. Descreve aparelhagem, procedimentos a serem aplicados e as condições para obtenção dos resultados.

Abstract

This document presents methodologics the procedures for determining the penetration of semi-solid and solid asphaltic materials to be used in highways. It also describes the apparatus, testing and the requirements for obtaining results.

Sumário

Pr	Prefacio1				
1	Objetivo	1			
2	Referências normativas	1			
3	Definição	1			
4	Aparelhagem	2			
5	Execução do ensaio	3			
6	Resultados	4			
Anexo A (Figura 1)5					
Anexo B (Foto 1)6					
Índice geral7					

Prefácio

A presente Norma foi preparada pelo Instituto de Pesquisas Rodoviárias - IPR/DIREX para servir como documento base, visando estabelecer os procedimentos para a realização do ensaio de determinação da penetração de materiais asfálticos.

Está formatada de acordo com a Norma DNIT 001/2009-PRO, cancela e substitui a Norma DNER - ME 003/99.

1 Objetivo

Este método prescreve o modo pelo qual deve ser determinada a penetração de materiais asfálticos sólidos e semi-sólidos, para determinação do seu tipo.

Referências normativas

Os documentos relacionados a seguir são indispensáveis à aplicação desta Norma. Para referências datadas, aplicam-se somente as edições citadas. Para referências não datadas aplicam-se as edições mais recentes do referido documento (incluindo emendas).

- a) ASTM E 1: Standard Specification for ASTM liquid in - glass thermometer.
- b) DNIT 001/2009-PRO: Elaboração e apresentação de normas do DNIT - Procedimento.
- c) DNIT 131/2010-ME: Materiais asfálticos Determinação do ponto de amolecimento - Método do Anel e Bola.
- NBR 14883 Petróleo e produtos de petróleo -Amostragem manual.

3 Definicão

Para os efeitos desta Norma aplica-se a seguinte definição:

Penetração – profundidade, em décimos de milímetro, que uma agulha padrão penetra verticalmente na amostra de material sob condições prefixadas de carga, tempo e temperatura.

4 Aparelhagem

A aparelhagem necessária é a seguinte:

 a) Recipiente de penetração, forma cilíndrica, fundo plano, de metal, com as dimensões internas apresentadas na Tabela 1.

Nota: Ensaios em materiais de penetrações inferiores a 40 décimos de milímetro, o recipiente deve ser de 55 x 35 mm;

Tabela 1 - Dimensões do recipiente de ensaio.

Para material com penetração (0,1 mm)	Diâmetro interno (mm)	Altura interna (mm)
40 a 200	55	35
≥ 201	55 – 75	45 – 70

 b) Penetrômetro – aparelho, cuidadosamente calibrado, que permite o movimento, sem fricção, da haste que fixa a agulha, de modo a fornecer resultados de acordo com a definição de penetração.

A massa da haste deve ser de $47,50 \pm 0,05$ g e a massa do conjunto da haste mais agulha deve ser de $50,00 \pm 0,05$ g. Massas de $50,00 \pm 0,05$ g e $100,00 \pm 0,05$ g devem estar disponíveis para compor massas totais de 100 g e 200 g, requeridas em condições opcionais de ensaio;

c) Agulhas, cujas dimensões são indicadas, na Figura
 1 do Anexo A, devem ser de aço inoxidável tipo
 AISI 440-C ou equivalente, temperado, com dureza

HRC 54 a HRC 60, altamente polidas no acabamento final.

A agulha-padrão curta deve ter comprimento de, aproximadamente, 50 mm e a agulha-padrão longa de, aproximadamente, 60 mm, sendo que o diâmetro de ambas deve estar compreendido entre 1,00 mm e 1,02 mm.

Um de seus extremos deve ter o seu diâmetro reduzido simetricamente, de modo a formar um cone cujo ângulo deve estar compreendido entre 8º40' e 9º40', com seu eixo coincidente com o eixo da agulha, dentro de uma tolerância máxima de 0,2 mm. Esse cone deve ser truncado perpendicularmente ao eixo da agulha, com uma tolerância de 2º, de modo que a base menor do cone tenha um diâmetro compreendido entre 0,14 mm e 0,16 mm (detalhe da ponta da agulha no Anexo A). A superfície da parte truncada deve ser polida a um grau de 0,2 μ m a 0,3 μ m - 8 μ in a 12 μ in (rms). O outro extremo da agulha deve ser coberto por uma luva metálica, cilíndrica, coaxial com a agulha, tendo aproximadamente as medidas apresentadas na Figura 1 do Anexo A, de modo que a parte exposta da agulha seja de 40 mm a 45 mm para a agulhapadrão curta e de 50 mm a 55 mm para a agulhapadrão longa. A luva da agulha deve ter diâmetro de $3,2 \pm 0,05$ mm e comprimento de 38 ± 1 mm. A agulha deve ser rigidamente montada na haste. O desvio, em toda a extensão da agulha, não deve exceder de 1 mm em relação ao eixo da haste.

A massa do conjunto agulha mais luva deve ser de $2,50\pm0,05\,\mathrm{g}$, permitindo-se, para controle da massa do conjunto, um orifício cilíndrico na extremidade da luva. As agulhas devem ter gravado o seu número na luva de fixação, e cada uma deve ter um certificado de aferição emitido por entidade legalmente habilitada;

d) O banho de água, para conter o recipiente com amostra, deve ter capacidade mínima de 10 litros, tendo uma prateleira perfurada situada, pelo menos, a 50 mm do fundo, devendo a lâmina de água sobre a amostra ter mais do que 100 mm e ser capaz de manter a temperatura de ensaio com precisão de ± 0,1 °C.

O uso de água destilada é recomendado. Evitar sua contaminação por agentes surfactantes ou dispersantes de outros produtos químicos, pois podem afetar os resultados dos ensaios;

- e)Cuba de transferência, cilíndrica, de vidro, possuindo no seu interior um dispositivo que dê suporte ao recipiente da amostra e evite o seu deslocamento durante o ensaio. Deve ter diâmetro interno mínimo de 90 mm, altura livre acima da amostra de 20 mm, no mínimo, e capacidade de pelo menos 350 ml;
- f) Cronômetro, graduado em 0,1 segundos, ou contador audível de segundos com precisão de ± 0,1 segundos, para intervalos de 60 segundos. Pode ser usado um sistema automático apropriado que seja acoplado ao penetrômetro;
- g)Termômetros de imersão total, tipo ASTM D 17C ou ASTM D 63C ou ASTM D 64C, de acordo com ASTM E 1- 76.

5 Execução do ensaio

5.1 Precauções na execução do ensaio

Cuidados especiais devem ser observados a respeito do emprego de materiais, equipamentos e operações que demandem perigo. Esta Norma não trata de problemas de segurança associados com seu uso. É responsabilidade do usuário estabelecer as práticas de segurança e de saúde apropriadas, e determinar a aplicabilidade das limitações regulamentares, antes de seu uso.

5.2 Preparação da amostra

 a) O material asfáltico recebido no laboratório de análise deve ter sido retirado de acordo com a Norma NBR 14883.

Aquecer a amostra cuidadosamente, em estufa, para evitar superaquecimento local, até que ela se torne fluída. Em seguida, com agitação constante, elevar a temperatura do material de, no máximo, 90°C acima do Ponto de Amolecimento (DNIT 131/2010-ME). O aquecimento com agitação constante deve ser realizado no menor tempo possível para garantir fluidez e homogeneidade da amostra. Evitar a inclusão de bolhas de ar.

5.3 Ensaio

 a) Transferir a amostra para o recipiente de penetração, de modo a ter uma altura de material, após o resfriamento, à temperatura de ensaio, em no mínimo 120% de profundidade da penetração esperada. Quando variarem as condições de ensaio, preparar uma amostra para cada variação.

Se o recipiente tiver um diâmetro menor que 65 mm e a penetração esperada maior que 200, preparar três amostras distintas para cada ensaio;

- b) Colocar a tampa no recipiente, para proteger a amostra contra poeira, deixar esfriar numa atmosfera cuja temperatura esteja entre 15 °C e 30 °C, durante o tempo de 60 a 90 minutos para o recipiente menor (55 x 35 mm) e de 90 a 120 minutos, para recipientes maiores;
- c) Colocar a amostra e a cuba de transferência no banho d'água, mantido na temperatura de ensaio ± 0,1°C, durante os mesmos intervalos de tempo citados na alínea "b" desta subseção, para resfriamento à temperatura ambiente;
- d) Quando as condições de ensaio não forem mencionadas, subentendem-se como 25 °C, 100 g e 5 segundos. Outras condições podem ser indicadas, como, por exemplo, as da Tabela 2. Nestes casos, as condições do ensaio devem ser relatadas.

Tabela 2 - Condições opcionais de ensaio

Temperatura (°C)	Carga (g)	Tempo (s)
0	200	60
4	200	60
45	50	5

 e) Examinar a luva da agulha e a haste, para certificar a ausência de água e outros materiais estranhos. Limpar a agulha com solvente adequado, secar com pano limpo e inserir no penetrômetro. Usando um indicador de nível, certificar-se de que o penetrômetro está nivelado;

- A menos que sejam especificadas condições especiais, colocar o peso de 50 g acima da agulha, fazendo com que a carga total seja de 100 g para o "conjunto de penetração", incluindo a agulha. Colocar o recipiente da amostra dentro da cuba de transferência, encher a cuba com água do banho d'água de tal modo que a amostra fique totalmente submersa. Colocar a cuba transferência, com água, sobre o prato do penetrômetro e ajustar imediatamente a agulha na haste, já devidamente carregada, à superfície da amostra, de forma que sua ponta não exerça nenhuma pressão sobre o material, o que pode ser observado quando a imagem da agulha refletida através do meio aquoso coincida com a imagem verdadeira. A imagem refletida pode ser visualizada com o auxílio de uma fonte luminosa que ilumine adequadamente a superfície da amostra;
- g) Anotar a leitura do mostrador do penetrômetro ou trazer o seu ponteiro para a posição zero. Após o ajuste da agulha à superfície da amostra e da leitura do mostrador do penetrômetro, liberar rapidamente a agulha durante o tempo especificado, ajustar o instrumento para medir a distância penetrada, em décimos de milímetro, e anotar esse valor. Caso o recipiente da amostra, à medida que a agulha é aplicada, sofra algum movimento, abandonar o ensaio;
- Fazer, pelo menos, três determinações em pontos da superfície da amostra, distantes entre si e da borda do recipiente de 10 mm, no mínimo;

- i) Depois de cada penetração, retirar a cuba de transferência e o recipiente da amostra, do penetrômetro. Colocar novamente o conjunto no banho à temperatura especificada. Limpar a agulha com solvente apropriado, enxugar com um pano limpo e seco e repetir a operação já descrita alínea "g", desta subseção;
- j) Para valores de penetrações maiores que 200 décimos de milímetro, utilizar no mínimo três agulhas, deixando-as na amostra até completar as três determinações.

6 Resultados

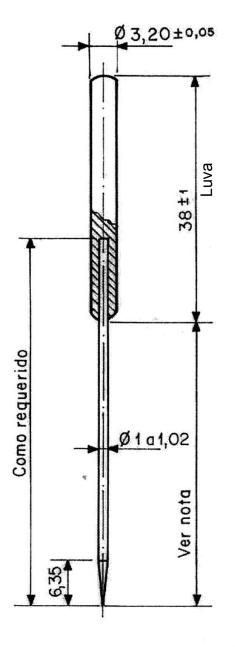
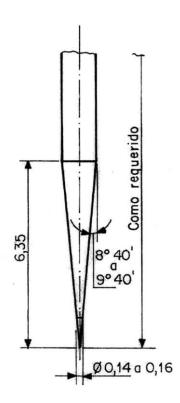

A penetração em décimos de milímetro, deve ser a média obtida, aproximada até a unidade, de no mínimo três determinações, cujos valores não se afastem mais que os indicados na Tabela 3.

Tabela 3 - Critérios para indicação de resultados


Penetração (0,1 mm)	Diferença máxima entre o valor mais alto e valor mais baixo das determinações (0,1 mm)
0 até 49	2
50 até 149	4
150 até 249	12
250 até 500	20

Anexo A (Normativo)

Figura 1 - Agulha para penetração

Detalhe da ponta da agulha

Dimensões em milímetros

NOTA:

Para agulha curta - (40 a 45) mm

Para agulha longa - (50 a 55) mm

_____/ Anexo B

NORMA DNIT 155/2010-ME ______6

Anexo B (Informativo)

Foto 1 - Penetrômetro

_____/ Índice geral

Índice geral							
Abstract		1	Precauções na execução do ensaio	5.1	3		
Anexo A (Figura 1) Anexo B (Foto 1)		5 6	Prefácio		1		
Aparelhagem	4	2	Preparação da amostra	5.2	3		
Definição	3	2	Referências normativas	2	1		
Ensaio	5.3	3	Resultados	6	4		
Execução do ensaio	5	3	Resumo		1		
Índice geral		7	Sumário		1		
Objetivo	1	1					